Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-32116571

RESUMEN

The piriform cortex (PC) is a key brain area involved in both processing and coding of olfactory information. It is implicated in various brain disorders, such as epilepsy, Alzheimer's disease, and autism. The PC consists of the anterior (APC) and posterior (PPC) parts, which are different anatomically and functionally. However, the direct input networks to specific neuronal populations within the APC and PPC remain poorly understood. Here, we mapped the whole-brain direct inputs to the two major neuronal populations, the excitatory glutamatergic principal neurons and inhibitory γ-aminobutyric acid (GABA)-ergic interneurons within the APC and PPC using the rabies virus (RV)-mediated retrograde trans-synaptic tracing system. We found that for both types of neurons, APC and PPC share some similarities in input networks, with dominant inputs originating from the olfactory region (OLF), followed by the cortical subplate (CTXsp), isocortex, cerebral nuclei (CNU), hippocampal formation (HPF) and interbrain (IB), whereas the midbrain (MB) and hindbrain (HB) were rarely labeled. However, APC and PPC also show distinct features in their input distribution patterns. For both types of neurons, the input proportion from the OLF to the APC was higher than that to the PPC; while the PPC received higher proportions of inputs from the HPF and CNU than the APC did. Overall, our results revealed the direct input networks of both excitatory and inhibitory neuronal populations of different PC subareas, providing a structural basis to analyze the diverse PC functions.


Asunto(s)
Neuronas GABAérgicas/fisiología , Ácido Glutámico/fisiología , Corteza Piriforme/citología , Corteza Piriforme/fisiología , Animales , Recuento de Células/métodos , Femenino , Neuronas GABAérgicas/química , Glutamato Descarboxilasa/análisis , Glutamato Descarboxilasa/fisiología , Ácido Glutámico/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Corteza Piriforme/química , Proteína 2 de Transporte Vesicular de Glutamato/análisis , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
2.
FASEB J ; 33(1): 400-417, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30011230

RESUMEN

Dopamine (DA) is a key regulator of circuits controlling movement and motivation. A subset of midbrain DA neurons has been shown to express the vesicular glutamate transporter (VGLUT)2, underlying their capacity for glutamate release. Glutamate release is found mainly by DA neurons of the ventral tegmental area (VTA) and can be detected at terminals contacting ventral, but not dorsal, striatal neurons, suggesting the possibility that target-derived signals regulate the neurotransmitter phenotype of DA neurons. Whether glutamate can be released from the same terminals that release DA or from a special subset of axon terminals is unclear. Here, we provide in vitro and in vivo data supporting the hypothesis that DA and glutamate-releasing terminals in mice are mostly segregated and that striatal neurons regulate the cophenotype of midbrain DA neurons and the segregation of release sites. Our work unveils a fundamental feature of dual neurotransmission and plasticity of the DA system.-Fortin, G. M., Ducrot, C., Giguère, N., Kouwenhoven, W. M., Bourque, M.-J., Pacelli, C., Varaschin, R. K., Brill, M., Singh, S., Wiseman, P. W., Trudeau, L.-E. Segregation of dopamine and glutamate release sites in dopamine neuron axons: regulation by striatal target cells.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ácido Glutámico/metabolismo , Transmisión Sináptica , Área Tegmental Ventral/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Animales , Cuerpo Estriado/citología , Neuronas Dopaminérgicas/citología , Masculino , Ratones , Ratones Noqueados , Área Tegmental Ventral/citología
3.
Neurobiol Dis ; 121: 230-239, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30308244

RESUMEN

Brain microvascular endothelial cells (BMEC) are highly complex regulatory cells that communicate with other cells in the neurovascular unit. Cerebral ischemic injury is known to produce detectable synaptic dysfunction. This study aims to investigate whether endothelial cells in the brain regulate postnatal synaptic development and to elucidate their role in functional recovery after ischemia. Here, we found that in vivo engraftment of endothelial cells increased synaptic puncta and excitatory postsynaptic currents in layers 2/3 of the motor cortex. This pro-synaptogenic effect was blocked by the depletion of VEGF in the grafted BMEC. The in vitro results showed that BMEC conditioned medium enhanced spine and synapse formation but conditioned medium without VEGF had no such effects. Moreover, under pathological conditions, transplanted endothelial cells were capable of enhancing angiogenesis and synaptogenesis and improved motor function in the ischemic injury model. Collectively, our findings suggest that endothelial cells promote excitatory synaptogenesis via the paracrine factor VEGF during postnatal development and exert repair functions in hypoxia-ischemic neonatal mice. This study highlights the importance of the endothelium-neuron interaction not only in regulating neuronal development but also in maintaining healthy brain function.


Asunto(s)
Isquemia Encefálica/fisiopatología , Células Endoteliales/fisiología , Potenciales Postsinápticos Excitadores , Corteza Motora/irrigación sanguínea , Corteza Motora/crecimiento & desarrollo , Trastornos Motores/fisiopatología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Isquemia Encefálica/complicaciones , Células Cultivadas , Medios de Cultivo Condicionados , Femenino , Masculino , Ratones Endogámicos C57BL , Microvasos/fisiología , Trastornos Motores/etiología , Neovascularización Fisiológica , Tálamo/crecimiento & desarrollo , Factor A de Crecimiento Endotelial Vascular/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
4.
Hear Res ; 376: 1-10, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30314930

RESUMEN

The inferior colliculus occupies a central position in ascending and descending auditory pathways. A substantial proportion of its neurons are GABAergic, and these neurons contribute to intracollicular circuits as well as to extrinsic projections to numerous targets. A variety of types of evidence - morphology, physiology, molecular markers - indicate that the GABAergic cells can be divided into at least four subtypes that serve different functions. However, there has yet to emerge a unified scheme for distinguishing these subtypes. The present review discusses these criteria and, where possible, relates the different properties. In contrast to GABAergic cells in cerebral cortex, where subtypes are much more thoroughly characterized, those in the inferior colliculus contribute substantially to numerous long range extrinsic projections. At present, the best characterized subtype is a GABAergic cell with a large soma, dense perisomatic synaptic inputs and a large axon that provides rapid auditory input to the thalamus. This large GABAergic subtype projects to additional targets, and other subtypes also project to the thalamus. The eventual characterization of these subtypes can be expected to reveal multiple functions of these inhibitory cells and the many circuits to which they contribute.


Asunto(s)
Neuronas GABAérgicas/clasificación , Neuronas GABAérgicas/fisiología , Colículos Inferiores/citología , Colículos Inferiores/fisiología , Animales , Vías Auditivas/citología , Vías Auditivas/fisiología , Proteínas de Unión al Calcio/fisiología , Extensiones de la Superficie Celular/fisiología , Extensiones de la Superficie Celular/ultraestructura , Neuronas GABAérgicas/citología , Modelos Neurológicos , Receptores de Neurotransmisores/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
5.
eNeuro ; 5(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29756029

RESUMEN

Intrinsically photosensitive retinal ganglion cells (ipRGCs) innervate the hypothalamic suprachiasmatic nucleus (SCN), a circadian oscillator that functions as a biological clock. ipRGCs use vesicular glutamate transporter 2 (vGlut2) to package glutamate into synaptic vesicles and light-evoked resetting of the SCN circadian clock is widely attributed to ipRGC glutamatergic neurotransmission. Pituitary adenylate cyclase-activating polypeptide (PACAP) is also packaged into vesicles in ipRGCs and PACAP may be coreleased with glutamate in the SCN. vGlut2 has been conditionally deleted in ipRGCs in mice [conditional knock-outs (cKOs)] and their aberrant photoentrainment and residual attenuated light responses have been ascribed to ipRGC PACAP release. However, there is no direct evidence that all ipRGC glutamatergic neurotransmission is eliminated in vGlut2 cKOs. Here, we examined two lines of ipRGC vGlut2 cKO mice for SCN-mediated behavioral responses under several lighting conditions and for ipRGC glutamatergic neurotransmission in the SCN. Circadian behavioral responses varied from a very limited response to light to near normal photoentrainment. After collecting behavioral data, hypothalamic slices were prepared and evoked EPSCs (eEPSCs) were recorded from SCN neurons by stimulating the optic chiasm. In cKOs, glutamatergic eEPSCs were recorded and all eEPSC parameters examined (stimulus threshold, amplitude, rise time or time-to-peak and stimulus strength to evoke a maximal response) were similar to controls. We conclude that a variable number but functionally significant percentage of ipRGCs in two vGlut2 cKO mouse lines continue to release glutamate. Thus, the residual SCN-mediated light responses in these cKO mouse lines cannot be attributed solely to ipRGC PACAP release.


Asunto(s)
Conducta Animal , Ritmo Circadiano , Potenciales Postsinápticos Excitadores , Ácido Glutámico/metabolismo , Quiasma Óptico/fisiología , Células Ganglionares de la Retina/fisiología , Núcleo Supraquiasmático/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Animales , Femenino , Masculino , Ratones Noqueados , Actividad Motora , Estimulación Luminosa
6.
Nat Commun ; 8(1): 1405, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29123082

RESUMEN

Basic and clinical observations suggest that the caudal hypothalamus comprises a key node of the ascending arousal system, but the cell types underlying this are not fully understood. Here we report that glutamate-releasing neurons of the supramammillary region (SuMvglut2) produce sustained behavioral and EEG arousal when chemogenetically activated. This effect is nearly abolished following selective genetic disruption of glutamate release from SuMvglut2 neurons. Inhibition of SuMvglut2 neurons decreases and fragments wake, also suppressing theta and gamma frequency EEG activity. SuMvglut2 neurons include a subpopulation containing both glutamate and GABA (SuMvgat/vglut2) and another also expressing nitric oxide synthase (SuMNos1/Vglut2). Activation of SuMvgat/vglut2 neurons produces minimal wake and optogenetic stimulation of SuMvgat/vglut2 terminals elicits monosynaptic release of both glutamate and GABA onto dentate granule cells. Activation of SuMNos1/Vglut2 neurons potently drives wakefulness, whereas inhibition reduces REM sleep theta activity. These results identify SuMvglut2 neurons as a key node of the wake-sleep regulatory system.


Asunto(s)
Nivel de Alerta/fisiología , Ácido Glutámico/fisiología , Hipotálamo Posterior/fisiología , Neuronas/fisiología , Animales , Hipotálamo Posterior/citología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo I/fisiología , Sueño REM/fisiología , Ritmo Teta/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/deficiencia , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Vigilia/fisiología
7.
Neuron ; 95(5): 1074-1088.e7, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28823729

RESUMEN

The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content.


Asunto(s)
Dopamina/metabolismo , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Animales , Animales Modificados Genéticamente , Dextroanfetamina/farmacología , Drosophila , Proteínas de Drosophila/metabolismo , Concentración de Iones de Hidrógeno , Locomoción/efectos de los fármacos , Mesencéfalo/metabolismo , Ratones , Neuronas/fisiología , Terminales Presinápticos/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética
8.
J Neurosci ; 35(43): 14533-43, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26511244

RESUMEN

Circulating estradiol exerts a profound influence on the activity of the gonadotropin-releasing hormone (GnRH) neuronal network controlling fertility. Using genetic strategies enabling neuron-specific deletion of estrogen receptor α (Esr1), we examine here whether estradiol-modulated GABA and glutamate transmission are critical for the functioning of the GnRH neuron network in the female mouse. Using Vgat- and Vglut2-ires-Cre knock-in mice and ESR1 immunohistochemistry, we demonstrate that subpopulations of GABA and glutamate neurons throughout the limbic forebrain express ESR1, with ESR1-GABAergic neurons being more widespread and numerous than ESR1-glutamatergic neurons. We crossed Vgat- and Vglut2-ires-Cre mice with an Esr1(lox/lox) line to generate animals with GABA-neuron-specific or glutamate-neuron-specific deletion of Esr1. Vgat-ires-Cre;Esr1(lox/lox) mice were infertile, with abnormal estrous cycles, and exhibited a complete failure of the estrogen positive feedback mechanism responsible for the preovulatory GnRH surge. However, puberty onset and estrogen negative feedback were normal. Vglut2-ires-Cre;Esr1(lox/lox) mice were also infertile but displayed a wider range of deficits, including advanced puberty onset, abnormal negative feedback, and abolished positive feedback. Whereas <25% of preoptic kisspeptin neurons expressed Cre in Vgat- and Vglut2-ires-Cre lines, ∼70% of arcuate kisspeptin neurons were targeted in Vglut2-ires-Cre;Esr1(lox/lox) mice, possibly contributing to their advanced puberty phenotype. These observations show that, unexpectedly, ESR1-GABA neurons are only essential for the positive feedback mechanism. In contrast, we reveal the key importance of ESR1 in glutamatergic neurons for multiple estrogen feedback loops within the GnRH neuronal network required for fertility in the female mouse.


Asunto(s)
Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/fisiología , Estrógenos/fisiología , Retroalimentación Fisiológica/fisiología , Fertilidad/genética , Fertilidad/fisiología , Glutamatos/fisiología , Neuronas/metabolismo , Maduración Sexual/genética , Maduración Sexual/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Receptor alfa de Estrógeno/biosíntesis , Ciclo Estral/genética , Ciclo Estral/fisiología , Femenino , Fase Folicular/genética , Fase Folicular/fisiología , Técnicas de Sustitución del Gen , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Kisspeptinas/fisiología , Sistema Límbico/metabolismo , Ratones , Prosencéfalo/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
9.
Eur J Neurosci ; 42(6): 2271-82, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26096172

RESUMEN

The retrotrapezoid nucleus (RTN) is a bilateral cluster of neurons located at the ventral surface of the brainstem below the facial nucleus. The RTN is activated by hypercapnia and stabilises arterial Pco2 by adjusting lung ventilation in a feedback manner. RTN neurons contain vesicular glutamate transporter-2 (Vglut2) transcripts (Slc17a6), and their synaptic boutons are Vglut2-immunoreactive. Here, we used optogenetics to test whether the RTN increases ventilation in conscious adult mice by releasing glutamate. Neurons located below the facial motor nucleus were transduced unilaterally to express channelrhodopsin-2 (ChR2)-enhanced yellow fluorescent protein, with lentiviral vectors that employ the Phox2b-activated artificial promoter PRSx8. The targeted population consisted of two types of Phox2b-expressing neuron: non-catecholaminergic neurons (putative RTN chemoreceptors) and catecholaminergic (C1) neurons. Opto-activation of a mix of ChR2-expressing RTN and C1 neurons produced a powerful stimulus frequency-dependent (5-15 Hz) stimulation of breathing in control conscious mice. Respiratory stimulation was comparable in mice in which dopamine-ß-hydroxylase (DßH)-positive neurons no longer expressed Vglut2 (DßH(C) (re/0);;Vglut2(fl/fl)). In a third group of mice, i.e. DßH(+/+);;Vglut2(fl/fl) mice, we injected a mixture of PRSx8-Cre lentiviral vector and Cre-dependent ChR2 adeno-associated virus 2 unilaterally into the RTN; this procedure deleted Vglut2 from ChR2-expressing neurons regardless of whether or not they were catecholaminergic. The ventilatory response elicited by photostimulation of ChR2-positive neurons was almost completely absent in these mice. Resting ventilatory parameters were identical in the three groups of mice, and their brains contained similar numbers of ChR2-positive catecholaminergic and non-catecholaminergic neurons. From these results, we conclude that RTN neurons increase breathing in conscious adult mice by releasing glutamate.


Asunto(s)
Ácido Glutámico/fisiología , Bulbo Raquídeo/fisiología , Neuronas/fisiología , Respiración , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Animales , Catecolaminas/fisiología , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/fisiología , Femenino , Masculino , Bulbo Raquídeo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Optogenética , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
10.
J Neurosci ; 34(42): 13906-10, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25319687

RESUMEN

The ventral tegmental area (VTA) plays roles in both reward and aversion. The participation of VTA in diverse behaviors likely reflects its heterogeneous neuronal phenotypes and circuits. Recent findings indicate that VTA GABAergic neurons that coexpress tyrosine hydroxylase (TH) projecting to lateral habenula (LHb) play a role in reward. In addition to these mesohabenular TH-GABAergic neurons, the VTA has many neurons expressing vesicular glutamate transporter 2 (VGluT2) that also project to LHb. To determine the behavioral role of mesohabenular VGluT2 neurons, we targeted channelrhodopsin2 to VTA VGluT2 neurons of VGluT2::Cre mice. These mice were tested in an apparatus where moving into one chamber stimulated VTA VGluT2 projections within the LHb, and exiting the chamber inactivated the stimulation. We found that mice spent significantly less time in the chamber where VGluT2 mesohabenular fiber stimulation occurred. Mice that received injections of mixed AMPA and NMDA glutamate receptor antagonists in LHb were unresponsive to VGluT2-mesohabenular fiber stimulation, demonstrating the participation of LHb glutamate receptors in mesohabenular stimulation-elicited aversion. In the absence of light stimulation, mice showed a conditioned place aversion to the chamber that was previously associated with VGluT2-mesohabenular fiber stimulation. We conclude that there is a glutamatergic signal from VTA VGluT2-mesohabenular neurons that plays a role in aversion by activating LHb glutamatergic receptors.


Asunto(s)
Reacción de Prevención/fisiología , Condicionamiento Psicológico/fisiología , Ácido Glutámico/fisiología , Habénula/fisiología , Área Tegmental Ventral/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Condicionamiento Psicológico/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Habénula/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Área Tegmental Ventral/efectos de los fármacos , Proteína 2 de Transporte Vesicular de Glutamato/antagonistas & inhibidores
11.
Mol Pharmacol ; 85(2): 322-34, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24275230

RESUMEN

The transient receptor potential cation channel subfamily V member 1 (TRPV1) is known as a thermosensor and integrator of inflammation-induced hyperalgesia. TRPV1 is expressed in a subpopulation of primary afferent neurons that express several different neurotransmitters. The role of the TRPV1 channel in the development of hyperalgesia is established, but the role of the neurotransmitter glutamate, used partially by the same neuronal population and thus probably mediating the response, is still under investigation. We have used a Trpv1-Cre mouse line in which we either ablated Trpv1-Cre expressing neurons or induced vesicular glutamate transporter 2 (Vglut2) deficiency in Trpv1-Cre expressing neurons and investigated specific states of hyperalgesia after persistent inflammation. Furthermore, by pharmacologic inhibition of substance P (SP) or calcitonin gene-related peptide (CGRP) signaling in Vglut2-deficient mice, we also evaluated the contribution of SP or CGRP to inflammation-induced hyperalgesia, with or without the presence of vesicular glutamate transporter 2 (VGLUT2)-mediated glutamatergic transmission in Trpv1-Cre neurons. This examination, together with c-Fos analyses, showed that VGLUT2-mediated glutamatergic transmission in Trpv1-Cre afferents together with SP or CGRP is essential for the development of the heat hyperalgesia associated with persistent inflammation. Additionally, SP-, CGRP-, and VGLUT2-mediated transmission together were found to play a role in the development of mechanical hyperalgesia after persistent inflammation.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/fisiología , Ácido Glutámico/fisiología , Hiperalgesia/etiología , Inflamación/complicaciones , Sustancia P/fisiología , Androstanos/farmacología , Animales , Bencimidazoles/farmacología , Femenino , Calor , Masculino , Ratones , Factor de Crecimiento Nervioso/fisiología , Neuronas Aferentes/fisiología , Piperazinas/farmacología , Quinazolinas/farmacología , Canales Catiónicos TRPV/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
12.
Neuron ; 80(4): 920-33, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24267650

RESUMEN

Locomotion is controlled by spinal networks that generate rhythm and coordinate left-right and flexor-extensor patterning. Defined populations of spinal interneurons have been linked to patterning circuits; however, neurons comprising the rhythm-generating kernel have remained elusive. Here, we identify an ipsilaterally projecting excitatory interneuron population, marked by the expression of Shox2 that overlaps partially with V2a interneurons. Optogenetic silencing or blocking synaptic output of Shox2 interneurons (INs) in transgenic mice perturbed rhythm without an effect on pattern generation, whereas ablation of the Shox2 IN subset coinciding with the V2a population was without effect. Most Shox2 INs are rhythmically active during locomotion and analysis of synaptic connectivity showed that Shox2 INs contact other Shox2 INs, commissural neurons, and motor neurons, with preference for flexor motor neurons. Our findings focus attention on a subset of Shox2 INs that appear to participate in the rhythm-generating kernel for spinal locomotion.


Asunto(s)
Proteínas de Homeodominio/fisiología , Interneuronas/fisiología , Locomoción/fisiología , Animales , Axones/fisiología , Dependovirus/genética , Fenómenos Electrofisiológicos , Agonistas de Aminoácidos Excitadores/farmacología , Silenciador del Gen , Ácido Glutámico/fisiología , Inmunohistoquímica , Hibridación in Situ , Locomoción/efectos de los fármacos , Masculino , Ratones , Neuronas Motoras/fisiología , N-Metilaspartato/farmacología , Vías Nerviosas/fisiología , Optogenética , Serotonina/farmacología , Médula Espinal/citología , Médula Espinal/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
13.
J Neurosci ; 33(26): 10647-60, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23804088

RESUMEN

The vesicular glutamate transporters (VGLUTs) package glutamate into synaptic vesicles, and the two principal isoforms VGLUT1 and VGLUT2 have been suggested to influence the properties of release. To understand how a VGLUT isoform might influence transmitter release, we have studied their trafficking and previously identified a dileucine-like endocytic motif in the C terminus of VGLUT1. Disruption of this motif impairs the activity-dependent recycling of VGLUT1, but does not eliminate its endocytosis. We now report the identification of two additional dileucine-like motifs in the N terminus of VGLUT1 that are not well conserved in the other isoforms. In the absence of all three motifs, rat VGLUT1 shows limited accumulation at synaptic sites and no longer responds to stimulation. In addition, shRNA-mediated knockdown of clathrin adaptor proteins AP-1 and AP-2 shows that the C-terminal motif acts largely via AP-2, whereas the N-terminal motifs use AP-1. Without the C-terminal motif, knockdown of AP-1 reduces the proportion of VGLUT1 that responds to stimulation. VGLUT1 thus contains multiple sorting signals that engage distinct trafficking mechanisms. In contrast to VGLUT1, the trafficking of VGLUT2 depends almost entirely on the conserved C-terminal dileucine-like motif: without this motif, a substantial fraction of VGLUT2 redistributes to the plasma membrane and the transporter's synaptic localization is disrupted. Consistent with these differences in trafficking signals, wild-type VGLUT1 and VGLUT2 differ in their response to stimulation.


Asunto(s)
Leucina/genética , Leucina/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Complejo 2 de Proteína Adaptadora/metabolismo , Secuencias de Aminoácidos/fisiología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Clatrina/metabolismo , Endocitosis/fisiología , Hipocampo/citología , Hipocampo/metabolismo , Concentración de Iones de Hidrógeno , Inmunohistoquímica , Datos de Secuencia Molecular , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/fisiología , Reacción en Cadena de la Polimerasa , Interferencia de ARN , Ratas , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
14.
J Neurosci ; 33(2): 734-47, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23303951

RESUMEN

Identification of the neural pathways involved in retraining the spinal central pattern generators (CPGs) by afferent input in the absence of descending supraspinal control is feasible in isolated rodent spinal cords where the locomotor CPGs are potently activated by sacrocaudal afferent (SCA) input. Here we study the involvement of sacral neurons projecting rostrally through the ventral funiculi (VF) in activation of the CPGs by sensory stimulation. Fluorescent labeling and immunostaining showed that VF neurons are innervated by primary afferents immunoreactive for vesicular glutamate transporters 1 and 2 and by intraspinal neurons. Calcium imaging revealed that 55% of the VF neurons were activated by SCA stimulation. The activity of VF neurons and the sacral and lumbar CPGs was abolished when non-NMDA receptors in the sacral segments were blocked by the antagonist CNQX. When sacral NMDA receptors were blocked by APV, the sacral CPGs were suppressed, VF neurons with nonrhythmic activity were recruited and a moderate-drive locomotor rhythm developed during SCA stimulation. In contrast, when the sacral CPGs were activated by SCA stimulation, rhythmic and nonrhythmic VF neurons were recruited and the locomotor rhythm was most powerful. The activity of 73 and 27% of the rhythmic VF neurons was in-phase with the ipsilateral and contralateral motor output, respectively. Collectively, our studies indicate that sacral VF neurons serve as a major link between SCA and the hindlimb CPGs and that the ability of SCA to induce stepping can be enhanced by the sacral CPGs. The nature of the ascending drive to lumbar CPGs, the identity of subpopulations of VF neurons, and their potential role in activating the locomotor rhythm are discussed.


Asunto(s)
Vías Aferentes/fisiología , Interneuronas/fisiología , Locomoción/fisiología , Médula Espinal/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Vías Aferentes/citología , Vías Aferentes/efectos de los fármacos , Animales , Calcio/fisiología , Interpretación Estadística de Datos , Estimulación Eléctrica , Electrodos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Técnica del Anticuerpo Fluorescente , Lateralidad Funcional/efectos de los fármacos , Lateralidad Funcional/fisiología , Ácido Glutámico/fisiología , Miembro Posterior/inervación , Miembro Posterior/fisiología , Inmunohistoquímica , Interneuronas/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , Microscopía Fluorescente , Ratas , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Región Sacrococcígea/fisiología , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
15.
PLoS One ; 8(12): e83974, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24391855

RESUMEN

Melanopsin-expressing retinal ganglion cells (mRGCs) in the eye play an important role in many light-activated non-image-forming functions including neonatal photoaversion and the adult pupillary light reflex (PLR). MRGCs rely on glutamate and possibly PACAP (pituitary adenylate cyclase-activating polypeptide) to relay visual signals to the brain. However, the role of these neurotransmitters for individual non-image-forming responses remains poorly understood. To clarify the role of glutamatergic signaling from mRGCs in neonatal aversion to light and in adult PLR, we conditionally deleted vesicular glutamate transporter (VGLUT2) selectively from mRGCs in mice. We found that deletion of VGLUT2 in mRGCs abolished negative phototaxis and light-induced distress vocalizations in neonatal mice, underscoring a necessary role for glutamatergic signaling. In adult mice, loss of VGLUT2 in mRGCs resulted in a slow and an incomplete PLR. We conclude that glutamatergic neurotransmission from mRGCs is required for neonatal photoaversion but is complemented by another non-glutamatergic signaling mechanism for the pupillary light reflex in adult mice. We speculate that this complementary signaling might be due to PACAP neurotransmission from mRGCs.


Asunto(s)
Luz , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Reflejo Pupilar/fisiología , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/fisiología , Transmisión Sináptica/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Animales , Animales Recién Nacidos , Conducta Animal , Femenino , Técnicas para Inmunoenzimas , Integrasas/metabolismo , Fototransducción , Masculino , Ratones , Ratones Noqueados , Neurotransmisores/metabolismo , Estimulación Luminosa , Reflejo Pupilar/efectos de la radiación , Células Ganglionares de la Retina/efectos de la radiación , Trastornos de la Visión , Visión Ocular/fisiología , Visión Ocular/efectos de la radiación
16.
J Comp Neurol ; 521(6): 1354-77, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23047588

RESUMEN

We examined thalamic input to striatum in rats using immunolabeling for the vesicular glutamate transporter (VGLUT2). Double immunofluorescence viewed with confocal laser scanning microscopy (CLSM) revealed that VGLUT2+ terminals are distinct from VGLUT1+ terminals. CLSM of Phaseolus vulgaris-leucoagglutinin (PHAL)-labeled cortical or thalamic terminals revealed that VGLUT2 is rare in corticostriatal terminals but nearly always present in thalamostriatal terminals. Electron microscopy revealed that VGLUT2+ terminals made up 39.4% of excitatory terminals in striatum (with VGLUT1+ corticostriatal terminals constituting the rest), and 66.8% of VGLUT2+ terminals synapsed on spines and the remainder on dendrites. VGLUT2+ axospinous terminals had a mean diameter of 0.624 µm, while VGLUT2+ axodendritic terminals a mean diameter of 0.698 µm. In tissue in which we simultaneously immunolabeled thalamostriatal terminals for VGLUT2 and striatal neurons for D1 (with about half of spines immunolabeled for D1), 54.6% of VGLUT2+ terminals targeted D1+ spines (i.e., direct pathway striatal neurons), and 37.3% of D1+ spines received VGLUT2+ synaptic contacts. By contrast, 45.4% of VGLUT2+ terminals targeted D1-negative spines (i.e., indirect pathway striatal neurons), and only 25.8% of D1-negative spines received VGLUT2+ synaptic contacts. Similarly, among VGLUT2+ axodendritic synaptic terminals, 59.1% contacted D1+ dendrites, and 40.9% contacted D1-negative dendrites. VGLUT2+ terminals on D1+ spines and dendrites tended to be slightly smaller than those on D1-negative spines and dendrites. Thus, thalamostriatal terminals contact both direct and indirect pathway striatal neurons, with a slight preference for direct. These results are consistent with physiological studies indicating slightly different effects of thalamic input on the two types of striatal projection neurons.


Asunto(s)
Cuerpo Estriado/ultraestructura , Neuronas/ultraestructura , Tálamo/ultraestructura , Proteína 2 de Transporte Vesicular de Glutamato/ultraestructura , Animales , Cuerpo Estriado/química , Cuerpo Estriado/citología , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Microscopía Confocal/métodos , Vías Nerviosas/química , Vías Nerviosas/citología , Vías Nerviosas/ultraestructura , Neuronas/química , Ratas , Ratas Sprague-Dawley , Tálamo/química , Tálamo/citología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
17.
Adv Exp Med Biol ; 758: 115-22, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23080151

RESUMEN

The retrotrapezoid nucleus (RTN) is located in the rostral medulla oblongata close to the ventral surface and consists of a bilateral cluster of glutamatergic neurons that are non-aminergic and express homeodomain transcription factor Phox2b throughout life. These neurons respond vigorously to increases in local pCO(2) via cell-autonomous and paracrine (glial) mechanisms and receive additional chemosensory information from the carotid bodies. RTN neurons exclusively innervate the regions of the brainstem that contain the respiratory pattern generator (RPG). Lesion or inhibition of RTN neurons largely attenuates the respiratory chemoreflex of adult rats whereas their activation increases respiratory rate, inspiratory amplitude and active expiration. Phox2b mutations that cause congenital central hypoventilation syndrome in humans prevent the development of RTN neurons in mice. Selective deletion of the RTN Phox2b-VGLUT2 neurons by genetic means in mice eliminates the respiratory chemoreflex in neonates.In short, RTN Phox2b-VGLUT2 neurons are a major nodal point of the CNS network that regulates pCO(2) via breathing and these cells are probable central chemoreceptors.


Asunto(s)
Células Quimiorreceptoras/fisiología , Bulbo Raquídeo/fisiología , Respiración , Animales , Dióxido de Carbono/metabolismo , Proteínas de Homeodominio/fisiología , Humanos , Reflejo , Factores de Transcripción/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
18.
Neuroscience ; 226: 253-69, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22989920

RESUMEN

Spinocerebellar tract neurons are inhibited by various sources of input via pathways activated by descending tracts as well as peripheral afferents. Inhibition may be used to modulate transmission of excitatory information forwarded to the cerebellum. However it may also provide information on the degree of inhibition of motoneurons and on the operation of inhibitory premotor neurons. Our aim was to extend previous comparisons of morphological substrates of excitation of spinocerebellar neurons to inhibitory input. Contacts formed by inhibitory axon terminals were characterised as either GABAergic, glycinergic or both GABAergic/glycinergic by using antibodies against vesicular GABA transporter, glutamic acid decarboxylase and gephyrin. Quantitative analysis revealed the presence of much higher proportions of inhibitory contacts when compared with excitatory contacts on spinal border (SB) neurons. However similar proportions of inhibitory and excitatory contacts were associated with ventral spinocerebellar tract (VSCT) and dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and the dorsal horn (dhDSCT). In all of the cells, the majority of inhibitory terminals were glycinergic. The density of contacts was higher on somata and proximal versus distal dendrites of SB and VSCT neurons but more evenly distributed in ccDSCT and dhDSCT neurons. Variations in the density and distribution of inhibitory contacts found in this study may reflect differences in information on inhibitory processes forwarded by subtypes of spinocerebellar tract neurons to the cerebellum.


Asunto(s)
Neuronas/fisiología , Médula Espinal/fisiología , Tractos Espinocerebelares/fisiología , Animales , Gatos , Estimulación Eléctrica , Ácido Glutámico/fisiología , Glicina/fisiología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Microscopía Confocal , Terminaciones Nerviosas/fisiología , Nervios Periféricos/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Ácido gamma-Aminobutírico/fisiología
19.
Nat Neurosci ; 15(9): 1192-4, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22885848

RESUMEN

We found that, during the formation of the mouse barrel cortex, NG2 cells received glutamatergic synapses from thalamocortical fibers and preferentially accumulated along septa separating the barrels. Sensory deprivation reduced thalamocortical inputs on NG2 cells and increased their proliferation, leading to a more uniform distribution in the deprived barrels. Thus, early sensory experience regulates thalamocortical innervation on NG2 cells, as well as their proliferation and distribution during development.


Asunto(s)
Células-Madre Neurales/fisiología , Corteza Somatosensorial/fisiología , Animales , Recuento de Células , Proliferación Celular , Proteínas de Unión al ADN , Oscuridad , Potenciales Postsinápticos Excitadores/fisiología , Glutamatos/fisiología , Inmunohistoquímica , Ratones , Ratones Transgénicos , Microscopía Confocal , Microscopía Fluorescente , Fibras Nerviosas/fisiología , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Oligodendroglía/fisiología , Técnicas de Placa-Clamp , Tálamo/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Vibrisas/inervación , Vibrisas/fisiología
20.
J Physiol ; 590(7): 1737-55, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22371473

RESUMEN

The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity.


Asunto(s)
Movimiento/fisiología , Neuronas/fisiología , Médula Espinal/fisiología , Tractos Espinocerebelares/fisiología , Animales , Gatos , Estimulación Eléctrica , Miembro Posterior/inervación , Miembro Posterior/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Médula Espinal/citología , Tractos Espinocerebelares/citología , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...